MACSec Redux

2016.09.15

Good ol’ MACSec.

First, I posted a quick and dirty notes-for-myself, MACSec how-to for Juniper.

Then, I posted a similar MACSec howto for Cisco. So here’s a miscellany of different macsec implementations.

Let’s say you want to run your own router, because your Layer 8 & 9 specialists mandate it, here MACSec on linux.

Here’s a guy who did cisco-switch-to-cisco-switch macsec over an mpls link between a cisco and juniper router (because macsec works at layer 1 and thus you need to fake layer 1 via MLPS). So that’s a thing.

Here’s the Extreme Network’s MACSec implementation:

set macsec port mka enable tg.1.1
set macsec pre-shared-key port tg.1.1 ckn foo cak passphrase bar

HP switches macsec config

Brocade MACSec details and also a Brocade sample config of MACSec.

Cisco MACSec Notes

2015.11.05

A while back I did notes for MACSec on Juniper devices and here’s the Cisco equivalent of the 802.1AE (“MAC Sec”) implementation

  1. Your Cisco device needs to be running either an IP Base or IP Services image. MACSec is not happening otherwise.
  2. switch# cts credentials id trustsec password mypassword
  3. en then, conf t, then int Gig1/1 (or whatever)
  4. switch(config-if)# cts man
    % Enabling macsec on Gi1/1 (may take a few seconds)…
    switch(config-if-cts-manual)#no propagate sgt
    switch(config-if-cts-manual)#sap pmk abc123 mode-list gcm-encrypt
    switch(config-if-cts-manual)#no shut

Where abc123 is your shared secret. I believe this is analogous to Juniper’s cak. You can do this to aggregated links (“port-channel” for you Cisco folks) but you have to do it before you aggregate the trunks together into a single logical interface. E.g., do this on Gig1/1 and Gig1/2 and then create int Port-channel1 (channel-group 1 mode on in the interface config)

Notes:

mode-list options are:

  • gcm-encrypt (authentication and encryption)
  • gmac (auth, no encrypt)
  • null (encapsulation only; no auth, no encryption)

 

Gotchas:

  • to use 802.1x (cts dot1x) as opposed to cts man above, you have to enable 802.1x globally on each device.
  • if you select gcm as the sap mode, you need an additional macsec license from cisco (as well as the ipbase or ipservices image/license). if you select gcm without the license, the interface goes into link-down state.

Debugging:

show cts credentials

show macsec summary

show macsec interface

show authentication sessions interface gigabitethernet1/1

 

Additional reading:

The actual Cisco doc (this is for a cat4500 but translates well most places) http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/15-1/XE_330SG/configuration/guide/config/swmacsec.html (here’s one for 3750/3560)

http://www.petenetlive.com/KB/Article/0001000.htm

http://www.virtualpackets.com/cisco-trustsec-switch-to-switch-link-security-manual-mode/

 

Juniper MACSec Notes

2014.10.16

MACSec is kind of neat (TL;DR for the impatient: layer-1 crypto on links).

Media Access Control Security (MACsec) is an industry-standard security technology that provides secure communication for all traffic on Ethernet links. MACsec provides point-to-point security on Ethernet links between directly connected nodes and is capable of identifying and preventing most security threats, including denial of service, intrusion, man-in-the-middle, masquerading, passive wiretapping, and playback attacks. MACsec is standardized in IEEE 802.1AE.

MACsec allows you to secure an Ethernet link for almost all traffic, including frames from the Link Layer Discovery Protocol (LLDP), Link Aggregation Control Protocol (LACP), Dynamic Host Configuration Protocol (DHCP), Address Resolution Protocol (ARP), and other protocols that are not typically secured on an Ethernet link because of limitations with other security solutions. MACsec can be used in combination with other security protocols such as IP Security (IPsec) and Secure Sockets Layer (SSL) to provide end-to-end network security.

CLI config:

#create an association:
set security macsec connectivity-association ca1

#choose a mode (static cak recommended — see here for why)
set security macsec connectivity-association ca1 security-mode static-cak

#ckn needs to be a 64-digit number in hex, but any empty space is padded w/ 0’s
set security macsec connectivity-association ca1 pre-shared-key ckn deadbeef99

#cak needs to be a 32-digit number in hex, but any empty space is padded w/ 0’s
set security macsec connectivity-association ca1 pre-shared-key cak deadbeef11

# set to 255 to make it “less likely” to be chosen as key server, 0 for “more likely”
set security macsec connectivity-association ca1 mka key-server-priority 0

# set to 6000 for high-traffic environment. default to 2000.
set security macsec connectivity-association ca1 mka transmit-interval 6000

#this leaves headers unencrypted for troubleshooting, set to 0 for full encryption, set to 50 for unencrypted ipv6 headers
set security macsec connectivity-association ca1 offset 30

# replay protection, set to 0 to enforce all packets coming in order
set security macsec connectivity-association ca1 replay-protect replay-window-size 5

# exclude a protocol
set exclude-protocol lldp

#enable macsec
set security macsec interfaces xe-0/1/0 connectivity-association ca1

Troubleshooting:
show security macsec statistics interface xe-0/1/0 detail

additional reading:
http://www.juniper.net/techpubs/en_US/junos13.2/topics/concept/macsec.html
http://www.juniper.net/techpubs/en_US/junos13.2/topics/reference/command-summary/show-security-macsec-statistics.html
(Cisco version: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/15-0_1_se/configuration/guide/3750xcg/swmacsec.pdf)

 

There’s a Cisco version of this here: http://david.piniella.net/2015/11/cisco-macsec-notes/

Categories : HowTo  Networking  Security